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Abstract

The main cost in composites is due to the resin and plasticizer, so fillers are added to reduce cost. In the other hand they
have to fulfill some mechanical requirements like strength and rigidity. This work faced this problem using a Neural
Network to get the optimum composition that leads to a minimum cost fulfilling all requirements. Finally an example
implementation is shown, where a plastic component weight is yet more reduced by using a Multiobjective Genetic
Algorithm. As result of the method a weight reduction of 50,2% is achieved.
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1. Introduction

Composites have been extensively used during last
years. Continuous increases in price of raw materials
push to optimize the material costs.

Traditional optimization methodologies can be extremely
expensive. Artificial intelligence seftles a new paradigm
which allows to drastically reduce new materials design
costs.

Artificial Neural networks (ANN from now) allow
predicting mechanical properties of the material from its
composition using a reduced number of tests. These
models not only have higher correlation ratios than any
other, but also have the capacity to learn.

Later a multiobjective optimization was done where cost
was optimized fulfilling strength and rigidity requirements.
Multiobjective Genetic Algorithms like MOGA and NSGA-
[1[1] can do it efficiently.

2. Materials and Methods

This work used a vinyl plastisol biomaterial (PVC/DINCH)
with cellulosic filler, using as biodegradable components
the plasticizer: dicarboxylate and the cellulosic filler:
almond husk, or sawdust or rice husk. The chosen
plasticizer for the PVC paste was a dicarboxylate named
Hexamoll®DINCH. It is the nontoxic and biodegradable
plasticizer H-675.

The mechanical properties tested were: Tensile ultimate
stress, Modulus of Elasticity (E), strain at break, A-Shore
and B-shore. The tests results can be read at [2].

The constituent rates were: 40, 50, 60 6 80 Phr for
plasticizer, 2 Phr for the stabilizer; 20, 30, 40, 50 6 60 %
of total mass for the filler. The particle granulometry of
the filler was 150, 500 and 1000 pm.

The material costs in Spain during the third semester of
2010 were: 90 €/t for almond husk, 94.4 €/t for rice husk,
334.33 €/t for sawdust, 250 €/kg and for DINCH
plasticizer, 1.60 €/kg PVC resin Lacovyl PB 1172 H and
3.80 €/kg for H-675 stabilizer.

The ANN was modeled using commercial software:
EasyNN-Plus. The models used for the soft to represent
the ANN are:

+ Neuron: sigmoid or Fermi transfer function [3]. Also
known as logistic function.

+ Network: forwardfeed. Multilayer perceptron [4, 5].

+ Training model: backpropagation [6]. The training
rate and momentum rate and the number neurons and of
hidden layers can be done manually or automatically.

These are the most common models in investigation

and industrial studies (almost in 90% of times).
The input variables used to develop the network were:
granulometry, filler percentage and plasticizer. The
output variables were: strength, Young modulus, section
reduction, break energy and shore A and D hardness.

The model generated was made by five layers: one
input, one output and three hidden layers. The number of
neurons in the hidden layers was 22, 23 and 22 read
from the input respectively. The total number of synapsis
was 1210. Then an individual ANN was developed per
each material, obtaining similar models but suitable for
each material.

As implementation example an angle bracket was
analyzed. The initial design whose mass was 10,342 g.
Figure 1 shows the initial design.

The FEM model was composed of the bracket angle,
three flat washers and three screws. Washers and screw
are made of steel. Due to the difference of elastic
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modulus between POM and steel, it last can be
considered ideally rigid. So the part made of steel where
modeled like a rigid solid and the bracket like an elastic
POM. Once the model was built, a 100N load shown in
the manufacturer catalogue, was applied in the single
screw and while the other two were fixed in the thread.
An only compression support was also applied on the
basis, so the inner surface will only suffer compression
stresses.

3. Results and Discussion

Once the ANN was done the following results were
analyses: error, relative importance of the input variables
and sensibility.

After training the ANN the mean error of the network
training was about 0,0099%. In all generated ANN the
three input variables: granulometry, percentage of filler
and plasticizer had a significant importance, so all of
them are important to describe the model. Then, a
maximization study of each separate variable was carried
about. Table 1 summarizes the optimal material
composition per each variable.

Table 1. Optimal compositions.

From the calculated points, the minimization parameter
and the constraints, a multiobjective genetic algorithm
based on the NSGA-ll algorithm estimated three
candidates. Table 2 summarizes the results.

Table 2. Algorithm results.
‘ Total deformation  Mass  Max. von mises.

R E Break
(MPa) (MPa) Energy
(MJ/m3)
Almond husk 6,03 142,92 3,1
%Filler 20 424 20
Phr 40 40 42,8
Granulometry 889,5 379,5 507
Price €/kg 1,598 1,175 1,607
Rice husk 6,1 94,6 3,82
%Filler 20 55,2 20
Phr 40 40 40
Granulometry 150 150 150
Price €/kg 1,602 0,939 1,602
Sawdust 5,38 162,24 3,01
%Filler 20 412 20
Phr 40 40 60,4
Granulometry 150 150 150
Price €/kg 1,842 1,442 1,904

As can be seen in Table 1, composites with rice husk
filler give the best mechanical properties with lower cost.
So this filler and composition was chosen for the studied
example. Then the example multi-optimization was
carried out.

The input variables for the example were individual
thickness of each plane and the output where the stress
and total displacement. The range per each input
variable was defined and a set of points (15 in total),
center distributed inside each variable domain, were
generated. Then all these points where calculated
generating a response surface.

Once the surface points were calculated, the
optimization problem was defined as: minimize the angle
mass, while de stress is lower than 55 MPa (next to yield
point) and total deformation is lower than 0,5 mm.

(mm) (9) stress (MPa)
A 05 52 34
B 0,54 5,1 37
c 0,49 52 34

From the three candidates, the Candidate A was chosen
as final design because it has more uniform thickness
than C. Candidate B violated total deformation constraint.
This design is 50,2% lighter than the initial one without
compromising its usefulness.

Fig. 1. Initial and final design.

4. Conclusions

It can be concluded that with the described techniques
a significant cost reduction can be achieved without
compromise its strength.
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